


Augmenting human sensemaking abilities
to achieve causal insights and foresights

(a.k.a. situational understanding)
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Empiricism

All hypotheses and theories must be tested against observations of the natural world,
rather than resting solely on a priori reasoning, intuition, or revelation.
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The path of the planet Uranus did not conform
to the path predicted by Newton’s law of
gravitation in presence of the known planets.

Explanations:
• Human/instrument measure error
• Newton’s laws are mistaken
• An invisible magic teapot caused the

perturbation in order to show the hubris
of modern science

• . . .
• Newton’s laws—confirmed by a

significant amount of evidence—are
correct and the perturbation is caused by
another, unknown, planet
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Scientific theories are capable of being
refuted: they are falsifiable

Verification and falsification are different
processes:

• No accumulation of confirming instances
is sufficient

• Only one contradicting instance suffices
to refute a theory

Scientific theories are tentative
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Does MMR vaccination cause autism?
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Argument from Correlation to Cause

Correlation Premise: There is a positive correlation between A and B.
Conclusion: A causes B.

CQ1: Is there really a correlation between A and B?
CQ2: Is there any reason to think that the correlation is any more than a

coincidence?
CQ3: Could there be some third factor, C, that is causing both A and B?

Walton, Reed, Macagno, Argumentation Schemes, CUP, 2008
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EARLY REPORT

Early report

lleal-lymphoid-nodular hyperplasia, non-specific colitis, and
pervasive developmental disorder in children

A J Wake eld, S H Murch, A Anthony, J Linnell, D M Casson, M Malik, M Berelowitz, A P Dhillon, M A Thomson,
P Harvey, A Valentine, 5 E Davies, J A Walker-Smith
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From Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children by Wakefield et al, The Lancet, 1998
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The New England

Iournal of Medicine
Copyright © 2002 by the Massachusetts Medical Society

VOLUME 347 N()VEMBER 7, 2002 NUMBER 19

A POPULATION-BASED STUDY OF MEASLES, MUMPS, AND RUBELLA
VACCINATION AND AUTISM

KREESTEN MELDGAARD MADSEN, M.D., ANDERS HVIID, M.Sc., MOGENS VESTERGAARD, M.D., DIANA SCHENDEL, PH.D.,
JAN WOHLFAHRT, M.Sc., POUL THORSEN, M.D., J(ZiRN OLSEN, M.D., AND MADS MELBYE, M.D.
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From A Population-based Study of Measles, Mumps, and Rubella Vaccination and Autism by Madsen et al, The New England Journal of Medicine, 2002



β =⇒ α

γ =⇒ β

ε =⇒ δ

δ ∈ β
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β =⇒ α

γ =⇒ β

ε =⇒ δ

δ ∈ β
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Results (tiny summary)

HCI Assessment of argumentation semantics against human intuition (ECAI 2014)

Algorithms Efficient algorithms and ensemble approaches (KR 2014, AAAI 2015, ECAI
2016, KER 2018, IJAR 2018, AIJ 2019, IJCAI 2021)

Impact Implementation in the CISpaces.org online system (AAMAS 2015, SPIE 2018,
COMMA 2018, JURIX 2018, AI3 2021)
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CISpaces.org

Fact extraction from Twitter
Argumentation graph
manipulation

Natural Language Generation
for Automatic Reporting

Available for use by professional analysts in the US Army
Research Laboratory, and the UK Joint Forces Intelligence
Group

TRL4: validation in a
laboratory environment

https://tiresia.unibs.it/cispaces
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F. Cerutti, T. J. Norman, A. Toniolo, and S. E. Middleton. CISpaces.org: from Fact Extraction to Report Generation. COMMA 2018, 269–281, 2018.

https://tiresia.unibs.it/cispaces
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Qualification problem

“ For example, the successful use of a boat to cross a river requires, if the boat
is a rowboat, that the oars and rowlocks be present and unbroken, and that they
fit each other. Many other qualifications can be added, making the rules for using
a rowboat almost impossible to apply, and yet anyone will still be able to think of
additional requirements not yet stated. „

J. McCarthy, “Circumscription—A Form of Nonmonotonic Reasoning,” AIJ, 13 (12): 2739, 1980.
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Uncertainty

Reliability of the Source
A Completely reliable
B Usually reliable
C Fairly reliable
D Not usually reliable
E Unreliable
F Reliability cannot be judged

Credibility of the Information
1 Confirmed by other sources
2 Probably true
3 Possibly true
4 Doubtful
5 Improbable
6 Truth cannot be judged
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0 . 1 : : bu rg la ry .
0 . 2 : : earthquake .
0 . 7 : : hears_alarm ( j ohn ) .
alarm :− burg la ry .
alarm :− earthquake .
c a l l s ( j ohn ) :− alarm , hears_alarm ( j ohn ) .
e v idence ( c a l l s ( j ohn ) ) .
query ( burg la ry ) .

alarm ↔ burglary ∨ earthquake
calls(john) ↔ alarm ∧ hears_alarm(john)

calls(john)
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Where numbers come from?

# Day Earthquake

1 T
2 T
3 F
4 F
5 F
6 F
7 F
8 F
9 F
10 F

π: true—unknown—probability of earthquake in a given period of
time

Let y be the number of occurrence of earthquake per period of time
(y = 2)

From Bayes’ theorem, we can estimate the posterior distribution of
π given the data on the basis of a prior: g (π|y ) ∝ g (π) · f (y |π)

The conjugate of a binomial is the Beta distribution. If:
g (π; a, b) = Beta(a, b) = Γ(a + b)

Γ(a) + Γ(b)π
a−1(1 − π)b−1

then: g (π|y ) = Beta(y + a, n − y + b)

If a = b = 1 (uniform prior), then g (π|y ) = Beta(y + 1, n − y + 1)

In the example, g (π|y = 2, n = 10) = Beta(3, 9)
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X1 ∼ Beta(3, 9)

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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1.0

1.5

2.0

2.5

3.0

E [X1] = 0.2500
Var (X1) = 1.4423 · 10−2

95% Confidence Interval:
[0.0602, 0.5178]

X2 ∼ Beta(21, 81)
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E [X2] = 0.2059
Var (X2) = 1.5873 · 10−3

95% Confidence Interval:
[0.1336, 0.2891]

X3 ∼ Beta(201, 801)
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E [X3] = 0.2006
Var (X3) = 1.5988 · 10−4

95% Confidence Interval:
[0.1764, 0.2259]

Although E [X1] ≃ E [X2] ≃ E [X3] ≃ 0.2

they represent remarkably different random variables

32
∗ Y-axes of the graphs are misaligned for better graphical representation.



Microsoft Human-AI Interaction Guidelines

Guideline 1: Make clear what the system
can do.

Guideline 2: Make clear how well the
system can do what it can do.
. . .

S. Amershi et. al., “Guidelines for Human-AI
Interaction,” CHI 2019

EU Requirements of Trustworthy AI

Human agency and oversight
Technical robustness and safety
Privacy and data governance
Transparency
Diversity, non-discrimination, and fairness
Societal and environmental wellbeing
Accountability

EUROPEAN COMMISSION, 2019. High-Level Expert
Group on Artificial Intelligence.
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ω2 : : bu rg la ry .
ω3 : : ear thquake .
ω4 : : hears_alarm ( john ) .
alarm :− burg la ry .
alarm :− earthquake .
c a l l s ( j ohn ) :− alarm , hears_alarm ( j ohn ) .
e v idence ( c a l l s ( j ohn ) ) .
query ( burg la ry ) .

Identifier Beta parameters

ω1 Beta(∞, 1)

ω1 Beta(1,∞)

ω2 Beta(2, 18)

ω2 Beta(18, 2)

ω3 Beta(2, 8)

ω3 Beta(8, 2)

ω4 Beta(3.5, 1.5)

ω4 Beta(1.5, 3.5)

Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,
Under Submission, 2021, https://arxiv.org/abs/2102.10865
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Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,
Under Submission, 2021, https://arxiv.org/abs/2102.10865
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Let n be a ⊕-gate over C nodes, its children

E[Xn ] =
∑

c∈C
E[Xc ],

cov[Xn ] =
∑

c∈C

∑

c ′∈C
cov[Xc ,Xc ′ ],

cov[Xn,Xz ] =
∑

c∈C
cov[Xc ,Xz ] for z ∈ N̂A \ {n}

Let n be a ⊗-gate over C nodes, its children

E[Xn ] =
∏

c∈C
E[Xc ],

cov[Xn ] ≃
∑

c∈C

∑

c ′∈C

E[Xn ]2
E[Xc ]E[Xc ′ ] cov[Xc ,Xc ′ ],

cov[Xn,Xz ] ≃
∑

c∈C

E[Xn ]
E[Xc ] cov[Xc ,Xz ] for z ∈ N̂A \ {n}.

E
[

Xr
Xr̂

]
≃ E[Xr ]

E[Xr̂ ] ,

cov
[

Xr
Xr̂

]
≃ 1

E[Xr̂ ]2 cov[Xr ] + E[Xr ]2
E[Xr̂ ]4 cov[Xr̂ ] − 2 E[Xr ]

E[Xr̂ ]3 cov[Xr ,Xr̂ ].

Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,
Under Submission, 2021, https://arxiv.org/abs/2102.10865
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A Trustworthy Loss Function

Classification becomes regression outputting pieces of evidences in favour of different classes

Expected squared error (aka Brier score) with Dir(mi | αi ) (prior for a Multinomial) penalising the
divergence from the uniform distribution:

L =
∑N

i=1 E[
∥∥y i − mi

∥∥2
2] + λt

∑N
i=1 KL ( Dir(µi | α̃i ) || Dir(µi | 1) )

where:

• λt avoid premature convergence to the uniform distribution;

• α̃i = y i + (1 − y i ) · αi are the Dirichlet parameters the neural network in a forward pass has put
on the wrong classes, and the idea is to minimise them as much as possible.

• KL ( Dir(µi | α̃i ) || Dir(µi | 1) ) = ln
(

Γ(
∑K

k=1 α̃i ,k )
Γ(K )

∏K
k=1 Γ(α̃i ,k )

)
+

∑K
k=1(α̃i ,k − 1)

[
ψ(α̃i ,k ) − ψ

(∑K
j=1 α̃i ,j

)]

where ψ(x ) = d
dx ln ( Γ(x ) ) is the digamma function

Şensoy, Kaplan, and Kandemir. “Evidential deep learning to quantify classification uncertainty.” NeurIPS. 2018.
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EDL + GAN for adversarial training

Şensoy, Kaplan, Cerutti, and Saleki. “Uncertainty-Aware Deep Classifiers using Generative Models.” AAAI 2020
42



Robustness against FGS

Anomaly detection

(mnist) (cifar10)
Şensoy, Kaplan, Cerutti, and Saleki. “Uncertainty-Aware Deep Classifiers using Generative Models.” AAAI 2020
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Roig Vilamala et. al. “A Hybrid Neuro-Symbolic Approach for Complex Event Processing (Extended Abstract).”
In ICLP2020.

Xing et. al. “Neuroplex: Learning to Detect Complex Events in Sensor Networks through Knowledge Injection.”
In SenSys2020.
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NeuroPLEX

Xing et. al. “Neuroplex: Learning to Detect Complex Events in Sensor Networks through Knowledge Injection.”
In SenSys2020.
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Roig Vilamala et. al. “A Hybrid Neuro-Symbolic Approach for Complex Event Processing (Extended Abstract).”
In ICLP2020.

Xing et. al. “Neuroplex: Learning to Detect Complex Events in Sensor Networks through Knowledge Injection.”
In SenSys2020.
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