

Trustworthy Learning and Rèasoning in Complex Domains
Federico Cerutti — federico.cerutti@unibs.it

Augmenting human sensemaking abilities to achieve causal insights and foresights
(a.k.a. situational understanding)

Overture. A brief historical case.

Act I. On conjectures, refutations, and argumentation.

Act II. There is no certain datum in the world.

Act III. Interesting problems are complex.

Epilogue.
the use of the intener by another; to learn. prehend; tobeinfor un-der-stand'ing, a. Inunderstanding; skilful.-n. n. telligent; knowing, of one who underscernment: knowledge; apprehension: faculty or power by which clear insight; the face faculty of the human one understands; the as the intellect: the mind otherwise known as inding; intelligence power of thinkingand persons; agreement of between two or more pually understood or minds: auything agreed upon. un-der-stat', v.t. as strougly understate, or represent less strongly too low; to gth will bear. too low; to
than the truth will bear.
un-der-stat'ment, n. moderstatement, ungstement under
determine not certai undeteri not restra undevia viating; ciple, or 1 undiges by the at arranged nalign fied; sho undila or mixe any aulm unaline

Empiricism

All hypotheses and theories must be tested against observations of the natural world, rather than resting solely on a priori reasoning, intuition, or revelation.

PHILOSOPHIÆ
 N A TuRALIS PRINCIPIA MATHEMATICA.

Autore 7 S. NEWTO N, Trin. Coll. Cantab. Soc. Mathefeos Profeffore Lucafiano, \& Societatis Regalis Sodali.

I M P R I M A TUR.
S. P E P Y S, Reg. Soc. P R 厄 S E S.

Julii 5. 1686.

LONDINI,
Juffu Societatis Regi.e ac Typis Fofephi Streater. Proftat apud plures Bibliopolas. Amno MDCLXXXVII.

The path of the planet Uranus did not conform to the path predicted by Newton's law of gravitation in presence of the known planets.

Explanations:

- Human/instrument measure error
- Newton's laws are mistaken
- An invisible magic teapot caused the perturbation in order to show the hubris of modern science
- Newton's laws-confirmed by a significant amount of evidence-are correct and the perturbation is caused by another, unknown, planet

Scientific theories are capable of being refuted: they are falsifiable

Verification and falsification are different processes:

- No accumulation of confirming instances is sufficient
- Only one contradicting instance suffices to refute a theory

Scientific theories are tentative

Overture. A brief historical case.

Act I. On conjectures, refutations, and argumentation.

Act II. There is no certain datum in the world.

Act III. Interesting problems are complex.

Epilogue.

Does MMR vaccination cause autism?

Argument from Correlation to Cause

Correlation Premise: There is a positive correlation between A and B.
Conclusion: A causes B.
CQ1: Is there really a correlation between A and B ?
CQ2: Is there any reason to think that the correlation is any more than a coincidence?

CQ3: Could there be some third factor, C, that is causing both A and B ?

[^0]MMR vaccination
causes authism

It is possible that
MMR vaccination is associated to

Early report

Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children

A J Wakefield, S H Murch, A Anthony, J Linnell, D M Casson, M Malik, M Berelowitz, A P Dhillon, M A Thomson, P Harvey, A Valentine, S E Davies, J A Walker-Smith

Summary

Introduction

investigated
saw several children who, after a norie

Findings Onset of behavioural symptoms was associated, by the parents, with measles, mumps, and rubella vaccination in eight of the 12 children, with measles infection in one child, and otitis media in another. All 12 children had intestinal abnormalities, ranging from lymphoid nodular hyperplasia to aphthoid ulceration. Histology showed patchy chronic inflammation in the colon in 11 children and reactive ileal lymphoid hyperplasia in seven, but no granulomas. Behavioural disorders included autism (nine), disintegrative psychosis (one), and possible postviral or vaccinal encephalitis (two). There were no focal neurological abnormalities and MRI and EEG tests were normal. Abnormal laboratory results were significantly raised urinary methylmalonic acid compared with agematched controls ($\mathrm{p}=0.003$), low haemoglobin in four children, and a low serum IgA in four children.

> What else should be true if the causal link is true?

Child	Behavioural diagnosls	Expowire identified by parents or doctor	Interval from exposure to finst behavioural symptom	Features associated with exposure	Age at onset of first spmptom	
					Behariour	Bomel
1	Autism	MMR	1 meek	Fever/delifium	12 menths	Not known
2	Autiam	MMR	2 weeks	Selt injury	13 months	20 months
3	Autism	MMR	48 n	Rash and fever	14 meseths	Not known
4	Autism? Disirtegrative disorder?	MMR	Meastes vaccine at 15 months folowed by slowing in deveropment. Dramatic deterication in behavicur inmedately ater MMB as 4.5 years	Reperitive behaviour. sell injur. loss of selfhele	4.5 years	18 months
5	Autism	None-MMR at 16 morths	Selfinjurious beheviour started at 18 morths		4 yeers	
6	Autism	MMR	1 week	Rash \& convilsion; gase aveidance \& self injury	15 mexths	18 menths
7	Autism	MMR	24 n	Comution sme meidance	21 mosths	2 yeus
8	Postraccinial encephaltis?	MMR	2 weeks	Fever, comulsion, rash 4 diamhoes	19 menths	19 months
9	Autistic spectrum disorder	Recurrent ottis media	1 week (MMR 2 months previousty)	Disisterestilack of ploy	18 menths	2.5 years
10	Postsiral encephaltis?	Measles (previouly vaccinated with MMR)	24 n	Ferer, rash \& vomiting	15 menths	Not known
11	Autism	mMR	1 week	Recurent viral pneumonia" for 8 weeks following MMR	15 menths	Not known
12	Autism	Nsoc-MMR at 15 montrs	Loss of speech develogment and detericration in inguage skills noted at 16 monens			Not known

[^1]context of susceptibility to infection, a genetic association

MMR vaccination
causes authism
 MMR vaccination is associated to autism

Behavioural symptoms were associated by parents of 12 children

The New England Journal of Medicine

$$
\text { Copyright © } 2002 \text { by the Massachusetts Medical Society }
$$

A POPULATION-BASED STUDY OF MEASLES, MUMPS, AND RUBELLA VACCINATION AND AUTISM

Kreesten Meldgaard Madsen, M.D., Anders Hviid, M.Sc., Mogens Vestergaard, M.D., Diana Schendel, Ph.D., Jan Wohlfahrt, M.Sc., Poul Thorsen, M.D., Jørn Olsen, M.D., and Mads Melbye, M.D.

There was no association between the age at the time of vaccination, the time since vaccination, or the date of vaccination and the development of autistic disorder.
Conclusions This study provides strong evidence against the hypothesis that MMR vaccination causes autism. (N Engl J Med 2002;347:1477-82.)
Copyright © 2002 Massachusetts Medical Society.

Results Of the 537,303 children in the cohort (rep-

 Resenting 2,129,864 person-years), 440,655 (82.0 percent) had received the MMR vaccine. We identified 316 children with a diagnosis of autistic disorder and 422 with a diagnosis of other autistic-spectrum disor422 with a diagnosis of other autistic-spectrum disorders. After adjustment for potential confounders, the relative risk of autistic disorder in the group of vaccinated children, as compared with the unvaccinated group, was 0.92 (95 percent confidence interval, 0.68 to 1.24), and the relative risk of another autistic-specval, 0.65 to 1.07).

$$
\begin{aligned}
& \beta \Longrightarrow \alpha \\
& \nu \Longrightarrow \beta \\
& \epsilon \Longrightarrow \delta \\
& \delta \in \bar{\beta}
\end{aligned}
$$

HCl Assessment of argumentation semantics against human intuition (ECAI 2014)

Algorithms Efficient algorithms and ensemble approaches (KR 2014, AAAI 2015, ECAI 2016, KER 2018, IJAR 2018, AIJ 2019, IJCAI 2021)

Impact Implementation in the CISpaces.org online system (AAMAS 2015, SPIE 2018, COMMA 2018, JURIX 2018, Al^{3} 2021)

CISpaces.org

Fact extraction from Twitter

Extract
it Qbreakingnews rumors of nyse trading floor rioting are not true says nyse

Text
RT @BreakingNews: Rumors of NYSE trading floor rioting are not true, says NYSE - ®politico @CNBC @weatherchannel

Twitter URI

https://twitter.com/LasiewickiAnn/status/2632221151200 82945

Time
Thu Nov 012012 10:13:37 GMT +0000 (GMT)

Argumentation graph manipulation

Natural Language Generation for Automatic Reporting

```
Anport
    werave roscons to belive that
    - Thac ciamm is not vpponod by midence
```



```
    arNu nospal
Nonover, we amo have Fe followng 2hypothenes.
ngporela, number 1
    *)
    evacrocte mwalibie
yporena, rumber 2
```



```
    -macromen vulubie
Here rep piceses of rommbon we rcevivd
    - Appon mac rate mulabie
```



```
    Gmbasy% Moser UK rationet
    *)
```


TRL4: validation in a laboratory environment

Available for use by professional analysts in the US Army Research Laboratory, and the UK Joint Forces Intelligence
https://tiresia.unibs.it/cispaces

Overture. A brief historical case.

Act I. On conjectures, refutations, and argumentation.

Act II. There is no certain datum in the world.

Act III. Interesting problems are complex.

Epilogue.

Qualification problem

II For example, the successful use of a boat to cross a river requires, if the boat is a rowboat, that the oars and rowlocks be present and unbroken, and that they fit each other. Many other qualifications can be added, making the rules for using a rowboat almost impossible to apply, and yet anyone will still be able to think of additional requirements not yet stated.
J. McCarthy, "Circumscription—A Form of Nonmonotonic Reasoning," AIJ, 13 (12): 2739, 1980.

Reliability of the Source	
A	Completely reliable
B	Usually reliable
C	Fairly reliable
D	Not usually reliable
E	Unreliable
F	Reliability cannot be judged

Credibility of the Information	
1	Confirmed by other sources
2	Probably true
3	Possibly true
4	Doubtful
5	Improbable
6	Truth cannot be judged

0.1: : burglary
0.2 : : earthquake
0.7: hears_alarm (john).
alarm :- burglary
alarm :- earthquake.
calls(john) :- alarm, hears_alarm(john).
evidence(calls(john)).
query (burglary).
alarm \leftrightarrow burglary \vee earthquake
calls (john) \leftrightarrow alarm \wedge hears_alarm (john) calls(john)

Where numbers come from?

\# Day	Earthquake
1	T
2	T
3	F
4	F
5	F
6	F
7	F
8	F
9	F
10	F

π : true—unknown—probability of earthquake in a given period of time

Let y be the number of occurrence of earthquake per period of time ($y=2$)

From Bayes' theorem, we can estimate the posterior distribution of π given the data on the basis of a prior: $g(\pi \mid y) \propto g(\pi) \cdot f(y \mid \pi)$

The conjugate of a binomial is the Beta distribution. If:
$g(\pi ; a, b)=\operatorname{Beta}(a, b)=\frac{\Gamma(a+b)}{\Gamma(a)+\Gamma(b)} \pi^{a-1}(1-\pi)^{b-1}$ then: $g(\pi \mid y)=\operatorname{Beta}(y+a, n-y+b)$

If $a=b=1$ (uniform prior), then $g(\pi \mid y)=\operatorname{Beta}(y+1, n-y+1)$
In the example, $g(\pi \mid y=2, n=10)=\operatorname{Beta}(3,9)$

$E\left[X_{1}\right]=0.2500$

$$
\operatorname{Var}\left(X_{1}\right)=1.4423 \cdot 10^{-2}
$$

95\% Confidence Interval: [0.0602, 0.5178]

$X_{2} \sim \operatorname{Beta}(21,81)$

$E\left[X_{2}\right]=0.2059$
$\operatorname{Var}\left(X_{2}\right)=1.5873 \cdot 10^{-3}$

95\% Confidence Interval:
[0.1336, 0.2891]

$E\left[X_{3}\right]=0.2006$
$\operatorname{Var}\left(X_{3}\right)=1.5988 \cdot 10^{-4}$

95\% Confidence Interval:
[0.1764, 0.2259]

Although $E\left[X_{1}\right] \simeq E\left[X_{2}\right] \simeq E\left[X_{3}\right] \simeq 0.2$
they represent remarkably different random variables

Microsoft Human-AI Interaction Guidelines

Guideline 1: Make clear what the system can do.

Guideline 2: Make clear how well the system can do what it can do. ...
S. Amershi et. al., "Guidelines for Human-AI Interaction," CHI 2019

EU Requirements of Trustworthy AI

Human agency and oversight Technical robustness and safety
Privacy and data governance Transparency
Diversity, non-discrimination, and fairness Societal and environmental wellbeing
Accountability

EUROPEAN COMMISSION, 2019. High-Level Expert Group on Artificial Intelligence.

Identifier	Beta parameters
ω_{1}	$\operatorname{Beta}(\infty, 1)$
$\overline{\omega_{1}}$	$\operatorname{Beta}(1, \infty)$
ω_{2}	$\operatorname{Beta}(2,18)$
$\overline{\omega_{2}}$	Beta (18, 2)
ω_{3}	Beta (2, 8)
$\overline{\omega_{3}}$	Beta (8,2)
ω_{4}	$\operatorname{Beta}(3.5,1.5)$
$\overline{\omega_{4}}$	Beta (1.5, 3.5)

Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits, Under Submission, 2021, https://arxiv.org/abs/2102.10865

Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits, Under Submission, 2021, https://arxiv.org/abs/2102.10865

Let n be a \oplus-gate over C nodes, its children

$$
\begin{aligned}
\mathbb{E}\left[X_{n}\right] & =\sum_{c \in C} \mathbb{E}\left[X_{c}\right], \\
\operatorname{cov}\left[X_{n}\right] & =\sum_{c \in C} \sum_{c^{\prime} \in C} \operatorname{cov}\left[X_{c}, X_{c^{\prime}}\right], \\
\operatorname{cov}\left[X_{n}, X_{z}\right] & =\sum_{c \in C} \operatorname{cov}\left[X_{c}, X_{z}\right] \text { for } z \in \widehat{N_{A}} \backslash\{n\}
\end{aligned}
$$

$$
\mathbb{E}\left[\frac{X_{r}}{X_{\widehat{r}}}\right] \simeq \frac{\mathbb{E}\left[X_{r}\right]}{\mathbb{E}\left[X_{\hat{r}}\right]}
$$

$$
\operatorname{cov}\left[\frac{X_{r}}{X_{\widehat{r}}}\right] \simeq \frac{1}{\mathbb{E}\left[X_{r}\right]^{2}} \operatorname{cov}\left[X_{r}\right]+\frac{\mathbb{E}\left[X_{r}\right]^{2}}{\mathbb{E}\left[X_{\widehat{r}}\right]^{4}} \operatorname{cov}\left[X_{\widehat{r}}\right]-2 \frac{\mathbb{E}\left[X_{r}\right]}{\mathbb{E}\left[X_{r}\right]^{3}} \operatorname{cov}\left[X_{r}, X_{r}\right] .
$$

Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits, Under Submission, 2021, https://arxiv.org/abs/2102.10865

Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits, Under Submission, 2021, https://arxiv.org/abs/2102.10865

Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits, Under Submission, 2021, https://arxiv.org/abs/2102.10865

Overture. A brief historical case.

Act I. On conjectures, refutations, and argumentation.

Act II. There is no certain datum in the world.

Act III. Interesting problems are complex.

Epilogue.

Classification becomes regression outputting pieces of evidences in favour of different classes
Expected squared error (aka Brier score) with $\operatorname{Dir}\left(\boldsymbol{m}_{i} \mid \alpha_{i}\right)$ (prior for a Multinomial) penalising the divergence from the uniform distribution:

$$
\mathcal{L}=\sum_{i=1}^{N} \mathbb{E}\left[\left\|\boldsymbol{y}_{i}-m_{i}\right\|_{2}^{2}\right]+\lambda_{t} \sum_{i=1}^{N} K L\left(\operatorname{Dir}\left(\mu_{i} \mid \tilde{\alpha}_{i}\right) \| \operatorname{Dir}\left(\mu_{i} \mid \mathbf{1}\right)\right)
$$

where:

- λ_{t} avoid premature convergence to the uniform distribution;
- $\tilde{\alpha}_{i}=\boldsymbol{y}_{i}+\left(1-\boldsymbol{y}_{i}\right) \cdot \alpha_{i}$ are the Dirichlet parameters the neural network in a forward pass has put on the wrong classes, and the idea is to minimise them as much as possible.
- $K L\left(\operatorname{Dir}\left(\boldsymbol{\mu}_{i} \mid \widetilde{\alpha}_{i}\right) \| \operatorname{Dir}\left(\boldsymbol{\mu}_{i} \mid \mathbf{1}\right)\right)=\ln \left(\frac{\Gamma\left(\sum_{k=1}^{K} \tilde{\alpha}_{i, k}\right)}{\Gamma(K) \prod_{k=1}^{K} \Gamma\left(\widetilde{\alpha}_{i, k}\right)}\right)+\sum_{k=1}^{K}\left(\widetilde{\alpha}_{i, k}-1\right)\left[\psi\left(\widetilde{\alpha}_{i, k}\right)-\psi\left(\sum_{j=1}^{k} \widetilde{\alpha}_{i, j}\right)\right]$ where $\psi(x)=\frac{\mathrm{d}}{\mathrm{d} x} \ln (\Gamma(x))$ is the digamma function

[^2]EDL + GAN for adversarial training

Şensoy, Kaplan, Cerutti, and Saleki. "Uncertainty-Aware Deep Classifiers using Generative Models." AAAI 2020

Robustness against FCIS

Anomaly detection

[^3]Roig Vilamala et. al. "A Hybrid Neuro-Symbolic Approach for Complex Event Processing (Extended Abstract)." In ICLP2020.

Xing et. al. "Neuroplex: Learning to Detect Complex Events in Sensor Networks through Knowledge Injection." In SenSys2020.

	Sim. 1	Sim. 2	Sim. 3	Sim. 4	Sim. 5
Window Length	10	20	30	3	2
\# of Uniq Events	10	10	10	3	3
\# of CE	4	4	7	5	4
Avg. CE Length	2.8	2.8	3.43	2	2
Neuroplex	$\mathbf{9 9 . 3 9 \%}$	$\mathbf{9 9 . 5 6 \%}$	$\mathbf{9 8 . 6 5 \%}$	$\mathbf{1 0 0 . 0 0 \%}$	99.98%
Lenet(Neuroplex)	98.87%	99.17%	98.91%	99.84%	99.78%
CRNN model	69.98%	7.79%	1.83%	86.37%	$\mathbf{9 9 . 9 9 \%}$
C3D model	88.47%	83.73%	86.91%	98.56%	99.72%

Xing et. al. "Neuroplex: Learning to Detect Complex Events in Sensor Networks through Knowledge Injection." In SenSys2020.

Overture. A brief historical case.

Act I. On conjectures, refutations, and argumentation.

Act II. There is no certain datum in the world.

Act III. Interesting problems are complex.

Epilogue.

Roig Vilamala et. al. "A Hybrid Neuro-Symbolic Approach for Complex Event Processing (Extended Abstract)." In ICLP2020.

Xing et. al. "Neuroplex: Learning to Detect Complex Events in Sensor Networks through Knowledge Injection." In SenSys2020.

10001000101000101001100010001010 00010100101001101010000101001019 0100100000010101001101001000000 01001001001010001010010010010010 01010101010110010010010101010101 01000010001001110101010000100010 00010010100100100101000100101001 10010000100101000010100100001001 01001010101011010001010010101010 10001000101000101001100010001010 00010100101001101010000101001019 01001000000101010011010010000001 0100100100101000101001001001001 d 01010101010110010010010101010101 01000010001001110101010000100010 00010010100100100101000100101001 10010000100101000010100100001001 $0100101010101101000101001010701(1)$ 10001000101000101001100010001010 00010100101001101010000 TonomTo 010010000001010100 0100100100101000101001001001001 01010101010110010010010501010 C $010000100010011 T 010 T 01000010001$ $0001001010010010010 T 000 T 0010 \mathrm{~T}$ 1001000010070 Tonototootoonotoot
S. Chakraborty IBM Research T. J. Watson • M. Giacomin Brescia • L. Kaplan US CCDC ARL A. Kimmig KU Leuven • S. Julier UCL • Y. McDermott-Rees Swansea • T. Norman Southampton
N. Oren Aberdeen •G. Pearson UK MoD Dstl • A. Preece Cardiff • M. Şensoy Ozyegin
M. Srivastava UCLA •M. Thimm Hagen • N. Tintarev Maastricht • A. Toniolo St. Andrews M. Vallati Huddersfield

Intern/PhD/Post-Doc
C. Allen Cardiff • A. Fanelli Brescia • L. Garcia UCLA •S. Habib UCL • C. Hougen Michigan
O. Lipinski Southampton •K. Mishra US CCDC ARL •M. Roig Vilamala Cardiff •H. Rose UCL G. Pellier-Hollows Cardiff • T. Xing UCLA • T. Zanetti Cardiff

[^0]: Walton, Reed, Macagno, Argumentation Schemes, CUP, 2008

[^1]: Table 2: Neuropsychiatric diagnos

[^2]: Şensoy, Kaplan, and Kandemir. "Evidential deep learning to quantify classification uncertainty." NeurIPS. 2018.

[^3]: Şensoy, Kaplan, Cerutti, and Saleki. "Uncertainty-Aware Deep Classifiers using Generative Models." AAAI 2020

