
Extreme weather and climate events are shifting in frequency, intensity, and geography 
as the planet warms, amplifying risks to people, infrastructure, and economies. 
Credible adaptation therefore requires tools that characterize hazardous phenomena 
with physical fidelity under data scarcity and translate large-scale environmental 
conditions into reliable, interpretable estimates of event occurrence across policy-
relevant time scales. This thesis advances both aims for cyclone hazards through two 
complementary lines of work and a supporting causal analysis. 
 
First, it mitigates data scarcity for intense extratropical cyclones by training a 
progressive growing generative adversarial network on reanalysis and historical tracks 
to synthesize maps of mean sea-level pressure, 10~m wind speed, and rainfall over the 
North Atlantic. Evaluation targets diversity (coverage of observed variability) and fidelity 
(realism of synoptic structure, gradients, and spatial patterns). The generator 
reproduces the organization of low and high pressure systems and the observed link 
between pressure gradients and surface winds, yielding credible wind distributions 
around cyclone centers and realistic rainfall patterns. The main shortfalls occur for the 
most localized rainfall extremes and for small scale pressure homogeneity in a few 
regions of high natural variability. Because the system can produce large, physically 
plausible samples within minutes, the results support generative augmentation for 
training and testing detection, intensity, and impact models where real events are rare. 
 
Second, the thesis develops an interpretable learning framework for tropical 
cyclogenesis (XAI-GPI) that estimates annual genesis counts by basin and explains their 
drivers. Starting from a broad pool of environmental predictors, a wrapper-based 
selection reduces redundancy and collinearity while retaining the most informative, 
basin-specific signals. A shallow neural network provides counts aggregated per basins, 
and SHapley Additive exPlanations quantify each predictor’s contribution. Applied 
across six basins, the index captures interannual variability more faithfully than 
standard empirical formulations while remaining transparent about mechanism: 
vertical wind shear, mid-tropospheric humidity, sea-surface temperature, maximum 
potential intensity, and ENSO emerge having differen roles depending on the basin. 
Although the framework slightly underestimates extreme years in some basins and 
performs modestly where data are sparse, it produces compact, region-specific 
predictor sets that transfer well to projection contexts. 
 
A complementary causal analysis examines the environmental factors that form the 
Emanuel and Nolan Genesis Potential Index. Three causal inference methods for time 
series are applied at the pixel and basin scales to infer directed links from 
environmental conditions to genesis at monthly resolution. Validation with simple 
neural networks confirms which variables retain predictive value when used alone or in 
small combinations. A coherent picture emerges: absolute vorticity is the primary driver 
of genesis variability, with mid-tropospheric humidity and vertical wind shear as 
secondary contributors; maximum potential intensity adds limited incremental 
information in this setting. Models trained on data aggregated at the basin level are 
more stable than models trained for individual grid points, underscoring the benefits of 
combining information and representing basin scale dynamics for rare events. 
 



Taken together, these contributions show how machine learning can add concrete value 
to cyclone risk analysis when outputs are physically credible, statistically robust, and 
explainable. They support adaptation needs by providing richer hazard datasets and 
clearer links from environment to annual event numbers, and they inform decision 
processes by delivering transparent diagnostics with quantified uncertainty and basin-
aware interpretation suitable for climate services and planning. 


