Al Ethics

Francesca Rossi IBM AI Ethics Global Leader

Politecnico di Milano, Sept. 19th, 2019

What is Al?

Intelligence and rationality

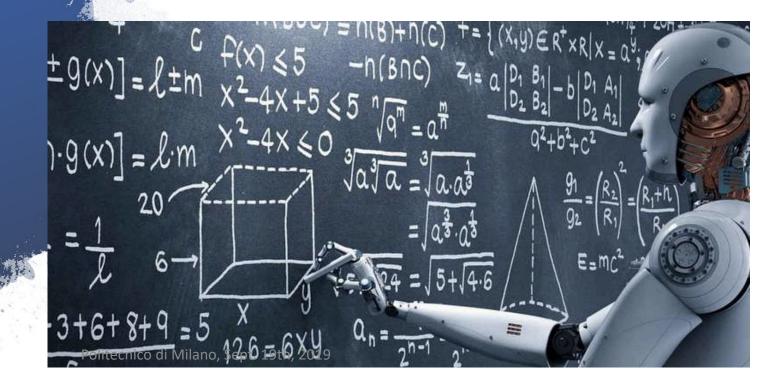
A scientific discipline that aims to create machines (hw/sw) that show a behavior that would be called intelligent if seen in a human being

Rationality Given a problem, to know (and act) how to best solve it

Narrow and general AI

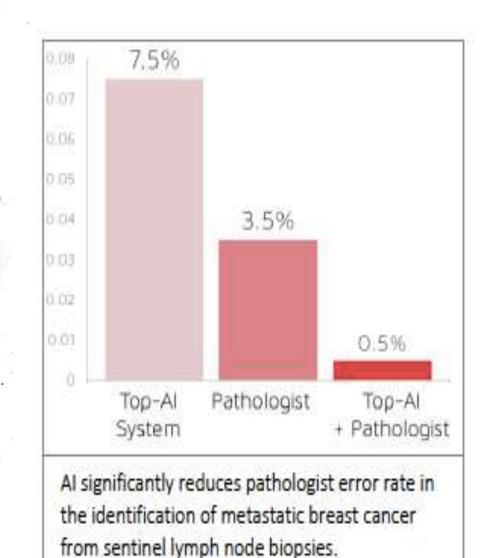
Narrow Al Can solve specific problems Vertical and specific

General AI Can handle different problems and scenarios Horizontal



Human-machine collaboration Complementarity

Artificial Intelligence vs Augmented Intelligence



Politecnico di Milano, Sept. 19th, 2019

How does it work?

How to teach a machine how to solve a problem?

Logical reasoning We tell it the steps to be done to solve the problem

 Machine learning We give examples of problem's solutions and we provide methods to generalize

.

AI, Machine Learning, Deep Learning

1980's

1970's

ARTIFICIAL INTELLIGENCE

Intelligent algorithms defined and coded by people into machines

MACHINE LEARNING

Ability to learn without being explicitly programmed

DEEP LEARNING

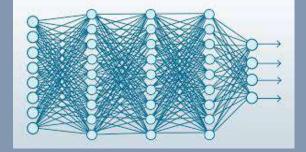
2010's

Learning based on Deep Neural Networks

1960's

1950's

1990's



2012's

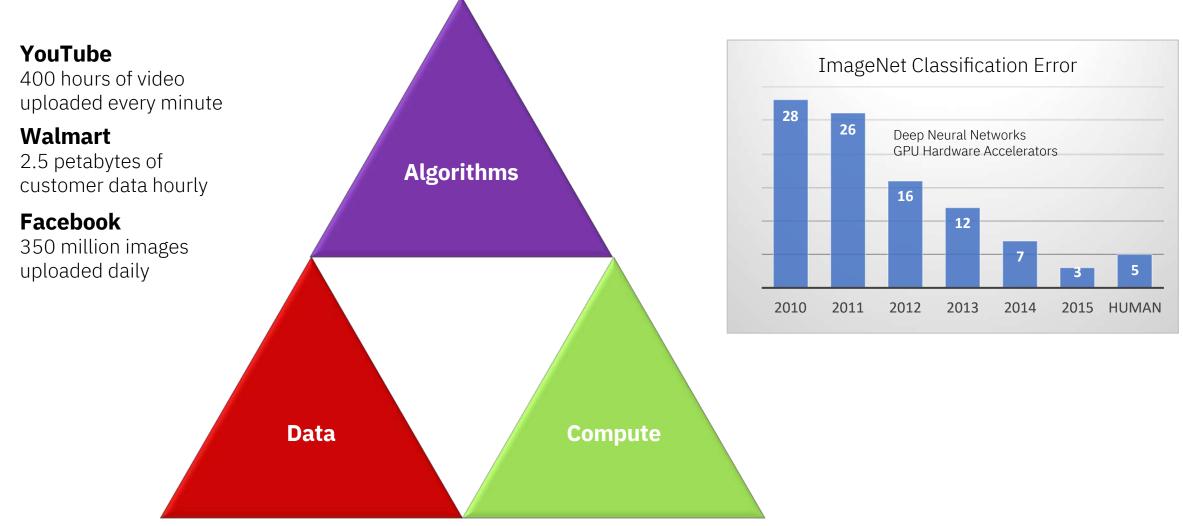
2017's

Politecnico di Milano, Sept. 19th, 2019

2000's

2006's

Machine/Deep Learning explosion



Al in our life

Hi I'm Siri, your humble personal assistar How can I help you today?

biog Google

Google translate

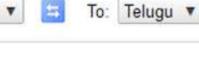
amazon.com

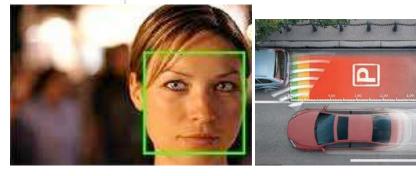
Recommended for You

Amazon.com has new recommendations for you based on $\underline{\mathsf{items}}$ you purchased or told us you own.

Google Apps Google Apps Deciphered: Compute in Administrator Guide: A the Cloud to Streamline Private-Label Web Your.Desktop Workspace

Google Apps Googlepedia: The Idministrator Guide: A Ultimate Google Private-Label Web Resource (3rd Edition) Workspace



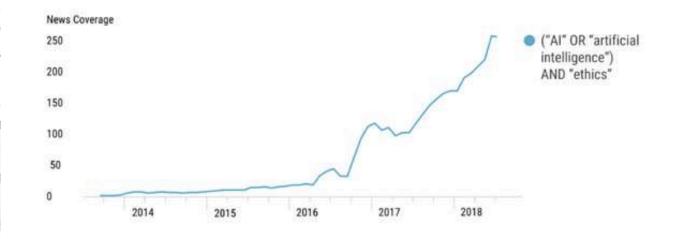


Current limitations

- Common sense reasoning
- Combination of learning and reasoning
- Natural language understanding
- Learning from few examples
- Learning general concepts
- Robustness/adversarial examples

Al ethics

Quarterly news mentions of ("AI OR artificial intelligence") AND "ethics" 2014 - Q3 2018



CBINSIGHTS

Source: cbinsights.com

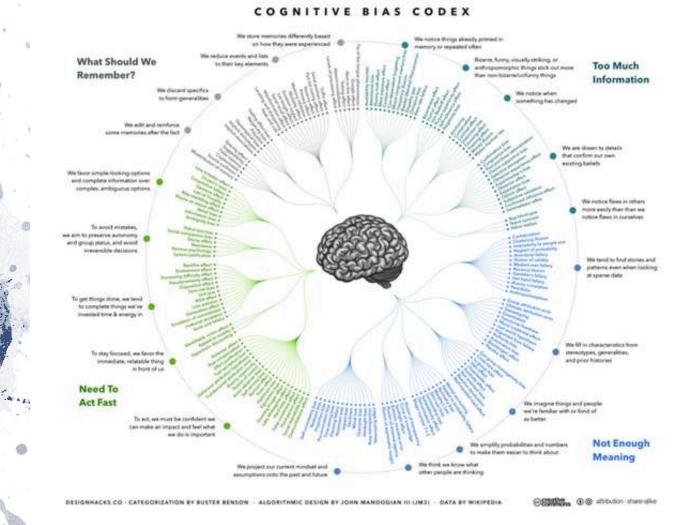
and a way

Main concerns

	Bias					
		Careful with the examples!			-	operties
	Value ali	gnment				the
¥ .	2	Ethical, moral, social, and lega	l const	raints	teo	chnology
	Black box	K				
		Must be able to explain its dee	cisions			
	Data issu	les			1	
		Privacy, storage, ownership, us	se		gov	ernance
	Accounta				U U	rules
		Who is responsible if somethin	ng goes	wrong?		
					1	
St. a	Impact o	n jobs			1	
		How to cope with job transfor	mation	?		
	Impact o	n society				societal
	N. 21	People-machine and people-p	eople i	nteractio	ons	issues
ant and	Deep fak	e				
		Al can generate content that le	ooks re	al but it	is not	
. •			1			
	Autonom	nous weapons, surveillance syst	ems	•	le vs de	esirable
S)	Are these acceptable uses?		uses		
olitoor	Superinte	elligence	long	term co	ncerns	
ontech		Sept. 19th, 2019 Will We lose control?				

Al bias

Humans are bias



Politecnico di Milano, Sept. 19th, 2019

Al bias

From biased training data to unfair decisions

English ▼ 🜒 🕂	Turkish - I 🗍 🌒	
He is a nurse. She is	O bir hemşire. O bir	English to Turkish
a doctor. Edit	doktor.	
Turkish - ▲) ←	English -	
O bir hemşire. O bir	She is a nurse. He is	Turkish to Englis
doktor. Edit	a doctor.	

What is being done?

Technological solutions

• Bias, explainability, security

• Other tools

• Principles, guidelines, best practices, incentives, standards, certificates, audits, laws, ...

Enablers

- Education and dissemination
 - Al students, developers, users, impacted communities, policy makers
- Governance
 - Within each AI company and globally

Multi-disciplinary efforts

AI, sociology, psychology, economy, philosophy, law

What is being done?

Education

COURSE TITLE	CODE	UNIVERSITY	DEPARTMENT
Algorithms and Society	EECS 395 and COMMST 395	Northwestern University	Computer Science and Communication Studies
Code and Power	LIS 500	University of Wisconsin - Madison	Information School
Designing Field Experiments at Scale	SOC 412	Princeton University	Sociology, Center for IT Policy
Digital Anthropology	ANTH 4020	University of Colorado Boulder	Continuing Education
Ethical and Policy Dimensions of Information, Technology, and New Media	INFO 4601/5601	University of Colorado Boulder	Information Science
Ethical and Social Implications of Data		Marquette University	Computer Science
Ethics in Business Analytics	ITAO 40510	University of Notre Dame	IT, Analytics, & Operations
Ethics in Data Science		University of Utah	Computer Science

Crowdsourced list of AI/CS ethics courses (238 entries so far), Casey Fiesler, CU Boulder

AI Ethics at IBM

AI Fairness 360

AL Fairness 360 Open Source Toolki

This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifed metrics and 9 state-of-the-art bias mitigation algorithms developed by the research community, it is designed to translate algorithmic research from the lab into the as ranging as finance, human capital management, healthcare, and education. We invite you to use it and improve it.

API Docs /

Not sure what to do first? Start here

Read More	Try a Web Demo	Watch a Video	Read a paper	Use Tutorials
Learn more about fairness and blas mitigation concepts, terminology, and tools before you begin.	Step through the process of checking and remediating bias in an interactive web domo that shows a sample of capabilities available in this toolkit.	Watch a video to learn mare about Al Fairness 360.	Read a paper describing how we designed AI Paintess 360.	Step through a set of in- depth examples that introduces developers to code that checks and mittigates bias in different indumy and application domains.
	-3	-		

Learn how to put this toolkit to work for your application or industry problem. Try these tutorials.

Credit Scoring	Medical	Gender Bias in
See how to detect and	Expenditure	Face Images
mitigate age bias in predictions of credit- scribiness using the German Credit clataset.	See how to detect and mitigate racial bias in a care management scenario using Medical Expenditure Panel Survey data.	See how to detect and mitigate blas in automatic gender classification of face images.

Welcome to the Adversarial Robustness Toolbox

This is a library dedicated to adversarial machine learning. Its purpose is to allow rapid crafting analysis of attacks and defense methods for machine learning models. The Adversarial Robustne Toolbox provides an implementation for many state-of-the-art methods for attacking and defen classifiers. The code can be found on GitHub.

Adversarial Robustness Toolbox

The library is still under development. Feedback, bug reports and extensions are highly apprecia

Supported Attacks, Defences and Metrics

The Adversarial Robustness Toolbox contains implementations of the following evasion attacks:

- DeepFool (Moosavi-Dezfooli et al., 2015)
- · Fast gradient method (Goodfellow et al., 2014)
- Basic iterative method (Kurakin et al., 2016)
- Projected gradient descent (Madry et al., 2017)
- Jacobian saliency map (Papemot et al., 2016)
- Universal perturbation (Moosavi-Dezfooli et al., 2016)
- Virtual adversarial method (Miyato et al., 2015) C&W L_2 and L_inf attacks (Carlini and Wagner, 2016)
- NewtonFool (Jang et al., 2017)
- Elastic net attack (Chen et al., 2017a)
- Spatial transformations attack (Engstrom et al., 2017)

AI Explainability 360

AI Explainability 360 Open Source Toolkit

This extensible open source toolkit can help you comprehend how machine learning models predict labels by various means throughout the AT application lifecycle. Containing eight state-of-the-art algorithms for interpretable machine learning as well as metrics for explainability, it is designed to translate algorithmic research from the lab into the actual practice of domains as wide-ranging as finance, human capital management, healthcare, and education. We invite you to use it and improve it.

Not sure what to do first? Start here!

Read More	Try a Web Demo	Use Tutorials	Ask a Question
Learn more about explainability concepts, terminology, and tools before you begin.	Step through the process of explaining models to consumers with different personas in an interactive web demo that shows a sample of capabilities available in this toolkit.	Step through a set of In- depth examples that introduce developers to code that explains data and models in different industry and application domains.	Join our AT Explainability 360 Slack Channel to ask questions, make comments, and tell stories about how you use the toolkit.
→	→ .	→	\rightarrow

You can add new algorithms

2016 IBM white paper

Learning to trust artificial intelligence systems Accountability, compliance and ethics in the age of smart machines

IBM

Dr. Gurucluth Banava Thiel Science Officer, Coonthe Computing (as President RM Research

Science for Social Good

Home Demo Resources

Applying artificial intelligence, cloud and deep science to scale social impact.

IBM's Principles for Trust and Transparency

AI ethics developer education

Everyday **Ethics** for Artificial Intelligence

A practical guide for designers & developers

tecnico d THERE.

AI factsheets

- What is the intended use of the service output?
- What algorithms or techniques does this service implement?
- Which datasets was the service tested on?
- · Describe the testing methodology and test results.
- Are you aware of possible examples of bias, ethical issues, or other safety risks as a result of using the service?
- · Are the service outputs explainable and/or interpretable?
- For each dataset used by the service:
 - Was the dataset checked for bias?
 - What efforts were made to ensure that it is fair and representative?
 - Does the service implement and perform any bias detection and remediation?
- What is the expected performance on unseen data or data with different distributions?
- Was the service checked for robustness against adversarial attacks?
- · When were the models last updated?

Embedding ethics into decision support systems

Personalization vs (ethical) behavioral constraints Preferences are essential to allow for personalized services Online recommendations, healthcare, financial advisors, etc

Also a way to tell a system what we want from it

But they need to be combined with other priorities to avoid undesired actions Ethics principles, moral values, business guidelines, behavioral constraints, common sense reasoning

Value alignment

To achieve a goal, given by a human in the best way possibly being creative and innovative while being aligned to the appropriate values for the task

Ethically bounded AI

 How do we bound the behavior of autonomous agents, without explicitly telling them what to do, in a way that it will achieve the goal while complying with appropriate ethical/behavioral constraints?

• Two main approaches:

- Top Down: write down all the rules and have the agent follow them
 - We need to know the best strategy to solve the problem
- Bottom Up: show the agent appropriate actions
 - Data-driven approach

Two explored solutions

1. Recommendation systems

- Goal: to teach AI systems how to obey behavioral constraints learned by observation while still being responsive to the feedback from users
 - Reinforcement Learning approach
 - Examples to describe the ethical constraints, learnt offline
 - Constrained RL behavior during online use

2. Preferences and ethical priorities

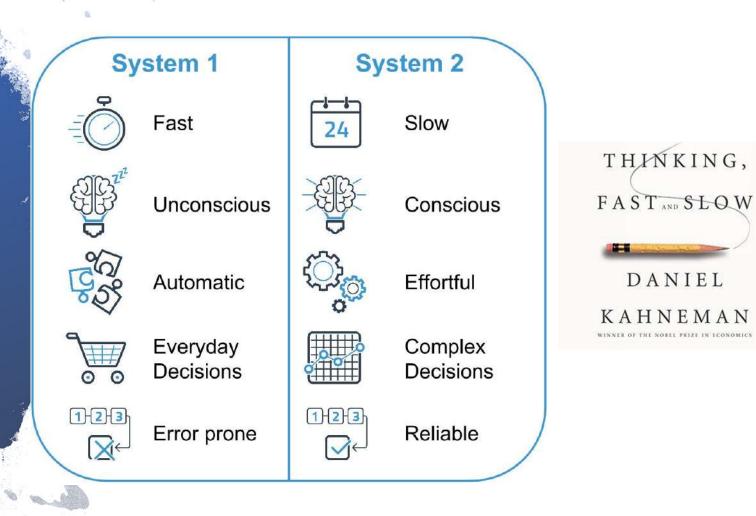
- Goal: To achieve personalization while not compromising essential values and principles
 - Preference frameworks (CP-nets) to model both preferences and ethical guidelines
 - Distance between CP-net structures
 - Distance thresholds to decide if agent can follow its preferences or must be better aligned to ethical priorities

Conference papers: AAAI 2018, AAMAS 2018, AIES 2018 Book chapters:

- Artificial Intelligence Safety and Security, CRC Press, 2018
- Ethics of AI, Oxford University Press, 2019

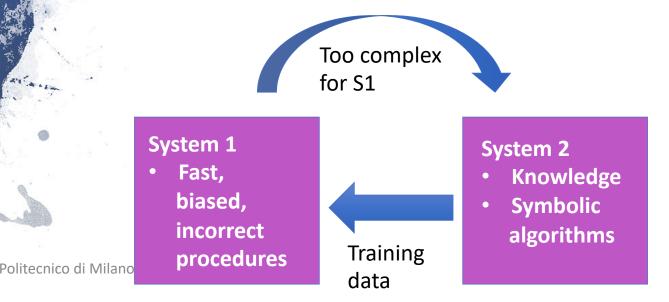
Which is better?

Should we choose? What happens in our brain?



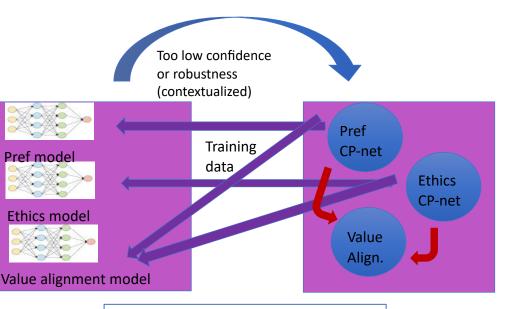
Fast and slow AI

- System 1 resembles a data-driven approach
 - Training data provided over time by System 2
 - After a while, some tasks pass to system 1, while others always require system 2
 - Ex.: reading a word, arithmetic 2-digit multiplication
- System 2 resembles a symbolic/logic approach
 - Understands how to tackle new or computationally difficult tasks
 - Computational complexity is (one of) the trigger(s) for system 2



Fast and slow preferences and ethical constraints

- A system 1 and a system 2 version for both preferences and ethical constraints
- The Pref/Ethics/VA modes answer to
 - What is the most preferred/ethical choice?
 - Is choice A dominated by choice B?
 - How far are my preferences from the ethical constraints?
- But only after he got enough training data from the Pref/Ethics/VA symbolic/logic procedure



Politecnico di Milano, Sept. 19th, 2019

Conferences: AAMAS 2019

What next?

- Implement the full dual-agent architecture
- Understand when S1 should call S2
 - or when S2 should awake and override S1
- Contextualize to tasks and scenarios
- Where to place causality and common sense reasoning?
- More than one ethical theory
 - Deontology: constraints and priorities
 - Utilitarianism
 - Contractualism
- Elephant in the Room: Where do values and ethical constraints come from?
 - Multi-stakeholder approach

Politecnico di Milano, Sept. 19th, 2019

