
Ph.D. in Information Technology:
Final Dissertations

DEIB- Seminar Room

January 7th, 2016
2.00 pm

First Ph.D. presentation and discussion:
Dr. Federica PANELLA – XXVII Cycle
Operator Precedence Languages: Theory and Applications
Supervisor: Prof. Matteo Pradella

Abstract: Operator Precedence Languages (OPLs) were introduced in the 1960s by
Robert Floyd to support deterministic and efficient parsing of context-free languages.
Recently, interest in this class of languages has been renewed thanks to a few
distinguishing properties that make them attractive for exploiting various modern
technologies in two main contexts: automatic software verification techniques, as model
checking, and parallel and incremental parsing of programming and data-description
languages.
This thesis provides a complete theory of OPLs and investigates the properties that allow
for their application in these different fields.
Along a first line of research, we complement the results on this class of languages that
have been proved in the last half a century, which characterized them in terms of
equivalent classes of grammars, recognizing automata and a Monadic second-order logic;
the study of their algebraic properties, furthermore, has qualified them as the largest class
of deterministic context-free languages enjoying closure under all main language
operations (Boolean ones, concatenation, Kleene * and others), strictly including renowned
families of formalisms as parentheses languages and Visibly Pushdown Languages
(VPLs). In this dissertation we extend research on OPLs to the field of omega-languages,
i.e., languages consisting of strings of infinite length, which can model the behavior of
systems with never-ending computations (such as operating systems, control systems,
web services). We introduce an automata and Monadic second-order logic-based
characterization for this class of languages and we prove their closure properties and the
decidability of the emptiness problem, showing that they admit a decidable model checking
problem. Furthermore, we study logic formalisms simpler than Monadic second-order logic
to define suitable subclasses of OPLs.
On a second line of investigation, this dissertation deals with a further property enjoyed by
OPLs that is not exhibited by other families of deterministic context-free languages such as
LR and LL, namely their local parsability. Local parsability means that parsing of any
substring of a string according to a grammar depends only on information that can be
obtained from a local analysis of the portion of the substring under processing and hence
is not influenced by parsing of other substrings. The lack of this property implies that
parsing algorithms for, e.g., LR and LL languages are inherently sequential and cannot

exploit the speedup achievable by a parallel execution on modern multi-core computing
platforms: in fact, if an input string is split into several parts, analyzed in parallel by
different processing nodes, the parsing actions may require communication among the
different processors, with considerable additional overhead. This thesis studies and
exploits the local parsability property of OPLs to enable efficient parallel parsing of data
description languages (as, e.g., the JSON standard data format) and programming
languages (as, e.g., Lua and JavaScript) and presents a schema for parallelizing also the
lexical analysis phase. The algorithms for parallel parsing and lexing have been
implemented in a prototype tool (PAPAGENO), which we validated with an extensive
experimental campaign, showing that they achieve significant, near-linear speedups on
modern multicore architectures, overcoming state of the art sequential parsers and lexers
generated by, e.g., Bison and Flex. We exploit the local parsability property enjoyed by
OPLs also for efficient parallel querying of large structured and semi-structured
documents.

Second Ph.D. presentation and discussion:
Dr. Michele SCANDALE - XXVIII Cycle
Towards Improving Programmability of Heterogeneous Parallel Architectures
Supervisor: Prof. Giovanni Agosta

Abstract: Parallel Computing has been considered an effective approach to combine
performance and power efficiency for a long time.
Starting from High Performance Computing (HPC) to modern embedded systems, the
employment of heterogeneous parallel architectures is becoming the common case, since
they provide a good tradeoff in terms of power efficiency.
The exascale objective for the next generation of HPC systems is constrained to a target
power envelope ranging from 20MW to 30MW. The existing ``Green'' HPC systems are
not yet able to reach the such power efficiency although they already employ modern
heterogeneous parallel architectures.
Ultra-low-power hardware platforms are gaining an increasing traction, as they may
represent the key component to allow future HPC systems to match the required power
efficiency.
The programmability of such systems is a critical aspect that has an huge impact on the
reachable power efficiency and the effort required to reach such target. Programming
parallel architectures is a complex task, since many hardware features are directly
exposed to the programmers.
Programming frameworks that try to hide such complexity exist, however they either
provide only sub-optimal performance with respect to hand tuned implementations, or they
are limited to specific application domains.
This dissertation tackles challenges related to the programmability of heterogenous
parallel architectures, acting on both existing and future programming models and
hardware architectures.

In particular, we present OpenCRun, an OpenCL runtime implementation supporting a
range of platforms with very different architectures characteristics, such as X86 multicores
and embedded parallel accelerators.
In the context of ultra-low-power architectures we report the joint effort between hardware
and software developers towards the PULP platform, showing the benefits of selected ISA
extensions and their compiler support to maximize the power efficiency.
Moreover, to improve functional and performance portability of OpenCL code between
GPGPUs and embedded many-core accelerators with explicitly managed memory such as
PULP and STHorm, we have proposed a code transformation technique, work-item
coalescing, that bypasses the limitations of the embedded platforms, allowing code
developed for GPGPU to be ported seamlessly, as well as a memory transfer optimization
technique to tune the resulting code to improve performance.
Finally, to increase the abstraction level in a more radical way, leveraging Shared Virtual
Memory that is expected to be available in future architectures, we have presented a
method to transparently implement shared function pointers in heterogeneous platforms
with two or more ISAs, a building block for enabling full C++ support across
heterogeneous ISAs.
Indeed we presented a fallback solution to implement function calls from device to
functions not available on the device itself. This mechanism is needed to enable the
transparent support of C++, and to provide more flexibility to the programmers dealing with
large and complex applications to be ported towards heterogeneous parallel accelerators.

